Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 63
Filter
1.
Biomed Pharmacother ; 163: 114892, 2023 Jul.
Article in English | MEDLINE | ID: covidwho-2318147

ABSTRACT

The pandemic of COVID-19 has highlighted the intricate relationship between gut microbiome and overall health. Recent studies have shown that the Firmicutes/Bacteroidetes ratio in the gut microbiome may be linked to various diseases including COVID-19 and type 2 diabetes (T2D). Understanding the link between gut microbiome and these diseases is essential for developing strategies for prevention and treatment. In this study, 115 participants were recruited and divided into three groups: 1st group: T2D patients and healthy controls, 2nd group: COVID-19 patients with and without T2D, 3rd group: T2D patients with COVID-19 treated with or without metformin. Gut microbial composition at the phylum level was assessed using qRT-PCR with universal primers targeting the bacterial 16 S rRNA gene and specific primers for Firmicutes and Bacteroidetes. Data was analyzed using one-way ANOVA, logistic regression, and Spearman's rank correlation coefficient. The study found that the ratio of Firmicutes to Bacteroidetes (F/B) was higher in patients with both T2D and COVID-19 compared to those with only T2D or COVID-19. Additionally, the F/B ratio was positively correlated with C-reactive protein (CRP) in T2D and COVID-19 patients. The study also suggests that metformin treatment may affect this correlation. Logistic regression analysis showed that the F/B ratio was significantly associated with CRP. These findings suggest that the F/B ratio may be a potential biomarker for inflammation in T2D and COVID-19 patients and metformin treatment may have an effect on the correlation between F/B and CRP levels.


Subject(s)
COVID-19 , Diabetes Mellitus, Type 2 , Metformin , Humans , Diabetes Mellitus, Type 2/metabolism , Metformin/therapeutic use , Bacteroidetes/genetics , Firmicutes , COVID-19/complications , Inflammation/drug therapy , Inflammation/complications , Biomarkers , C-Reactive Protein
2.
Int J Mol Sci ; 24(7)2023 Mar 24.
Article in English | MEDLINE | ID: covidwho-2300836

ABSTRACT

The importance of the prevention and control of non-communicable diseases, including obesity, metabolic syndrome, type 2 diabetes, cardiovascular diseases, and cancer, is increasing as a requirement of the aging population in developed countries and the sustainability of healthcare. Similarly, the 2013-2030 action plan of the WHO for the prevention and control of non-communicable diseases seeks these achievements. Adequate lifestyle changes, alone or with the necessary treatments, could reduce the risk of mortality or the deterioration of quality of life. In our recent work, we summarized the role of two central factors, i.e., appropriate levels of vitamin D and SIRT1, which are connected to adequate lifestyles with beneficial effects on the prevention and control of non-communicable diseases. Both of these factors have received increased attention in relation to the COVID-19 pandemic as they both take part in regulation of the main metabolic processes, i.e., lipid/glucose/energy homeostasis, oxidative stress, redox balance, and cell fate, as well as in the healthy regulation of the immune system. Vitamin D and SIRT1 have direct and indirect influence of the regulation of transcription and epigenetic changes and are related to cytoplasmic signaling pathways such as PLC/DAG/IP3/PKC/MAPK, MEK/Erk, insulin/mTOR/cell growth, proliferation; leptin/PI3K-Akt-mTORC1, Akt/NFĸB/COX-2, NFĸB/TNFα, IL-6, IL-8, IL-1ß, and AMPK/PGC-1α/GLUT4, among others. Through their proper regulation, they maintain normal body weight, lipid profile, insulin secretion and sensitivity, balance between the pro- and anti-inflammatory processes under normal conditions and infections, maintain endothelial health; balance cell differentiation, proliferation, and fate; and balance the circadian rhythm of the cellular metabolism. The role of these two molecules is interconnected in the molecular network, and they regulate each other in several layers of the homeostasis of energy and the cellular metabolism. Both have a central role in the maintenance of healthy and balanced immune regulation and redox reactions; therefore, they could constitute promising targets either for prevention or as complementary therapies to achieve a better quality of life, at any age, for healthy people and patients under chronic conditions.


Subject(s)
COVID-19 , Diabetes Mellitus, Type 2 , Neoplasms , Noncommunicable Diseases , Humans , Aged , Vitamin D/therapeutic use , Sirtuin 1/metabolism , Diabetes Mellitus, Type 2/metabolism , Quality of Life , Pandemics , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , Vitamins , Neoplasms/prevention & control , Lipids
3.
Arterioscler Thromb Vasc Biol ; 43(5): 628-636, 2023 05.
Article in English | MEDLINE | ID: covidwho-2266992

ABSTRACT

Recent studies have demonstrated a novel function of red blood cells (RBCs) beyond their classical role as gas transporters, that is, RBCs undergo functional alterations in cardiovascular and metabolic disease, and RBC dysfunction is associated with hypertension and the development of cardiovascular injury in type 2 diabetes, heart failure, preeclampsia, familial hypercholesterolemia/dyslipidemia, and COVID-19. The underlying mechanisms include decreased nitric oxide bioavailability, increased arginase activity, and reactive oxygen species formation. Of interest, RBCs contain diverse and abundant micro (mi)RNAs. miRNA expression pattern in RBCs reflects the expression in the whole blood, serum, and plasma. miRNA levels in RBCs have been found to be altered in various cardiovascular and metabolic diseases, which contributes to the development of cardiovascular complications. Evidence has shown that RBC-derived miRNAs interact with the cardiovascular system via extracellular vesicles and argonaute RISC catalytic component 2 as carriers. Alteration of RBC-to-vascular communication via miRNAs may serve as potential disease mechanism for vascular complications. The present review summarizes RBCs and their released miRNAs as potential mediators of cardiovascular injury. We further focus on the possible mechanisms by which RBC-derived miRNAs regulate cardiovascular function. A better understanding of the function of RBC-derived miRNAs will increase insights into the disease mechanism and potential targets for the treatment of cardiovascular complications.


Subject(s)
COVID-19 , Cardiovascular Diseases , Diabetes Mellitus, Type 2 , MicroRNAs , Female , Pregnancy , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , Diabetes Mellitus, Type 2/metabolism , COVID-19/metabolism , Erythrocytes/metabolism , Heart , Cardiovascular Diseases/genetics , Cardiovascular Diseases/metabolism
4.
Adipocyte ; 12(1): 2194034, 2023 12.
Article in English | MEDLINE | ID: covidwho-2284153

ABSTRACT

The renin-angiotensin system (RAS) operates within adipose tissue. Obesity-related changes can affect adipose RAS, predisposing to hypertension, type 2 diabetes, and possibly severe COVID-19. We evaluated the in vitro research on human adipose RAS and identified gaps in the literature. Medline (Ovid), Embase (Ovid), Web of Science, Scopus, and 1findr were searched to identify relevant studies. Fifty primary studies met our inclusion criteria for analysis. Expression of RAS components (n = 14), role in differentiation (n = 14), association with inflammation (n = 15) or blood pressure (n = 7) were investigated. We found (1) obesity-related changes in RAS were frequently studied (30%); (2) an upswing of articles investigating adipose ACE-2 expression since the COVID-19 pandemic; (3) a paucity of papers on AT2R and Ang (1-7)/MasR which counterbalance Ang II/ART1; (4) weight loss lowered adipose ACE-2 mRNA expression; and (5) angiotensin receptor blockers (ARBs) reduced deleterious effects of angiotensin II. Overall, these studies link Ang II/ATR1 signalling to impaired adipogenesis and a pro-inflammatory dysfunctional adipose tissue, with ATR1 blockade limiting these responses. ACE-2 may mitigate Ang II effects by converting it to Ang(1-7) which binds MasR. More work is needed to understand adipose RAS in various pathologic states such as obesity and COVID-19 infection.T.


Subject(s)
COVID-19 , Diabetes Mellitus, Type 2 , Humans , Renin-Angiotensin System/genetics , SARS-CoV-2 , Angiotensin Receptor Antagonists/pharmacology , Pandemics , Diabetes Mellitus, Type 2/metabolism , Angiotensin-Converting Enzyme Inhibitors/pharmacology , Adipose Tissue/metabolism , Adipocytes/metabolism , Obesity/metabolism
5.
Sci Rep ; 12(1): 14935, 2022 Sep 02.
Article in English | MEDLINE | ID: covidwho-2008304

ABSTRACT

Obesity and type 2 diabetes (T2D) show an increased risk for a severe COVID-19 disease. Treatment with DPP4 inhibitor (DPP4i) results in reduced mortality and better clinical outcome. Here, we aimed to identify potential mechanisms for the observed DPP4i effect in COVID-19. Comparing T2D subjects with and without DPP4i treatment, we identified a significant increase of the anti-inflammatory adipokine sFRP5 in relation to DPP4 inhibition. sFRP5 is a specific antagonist to Wnt5a, a glycopeptide secreted by adipose tissue macrophages acting pro-inflammatory in various diseases. We therefore examined sFRP5 levels in patients hospitalised for severe COVID-19 and found significant lower levels compared to healthy controls. Since sFRP5 might consequently be a molecular link for the beneficial effects of DPP4i in COVID-19, we further aimed to identify the exact source of sFRP5 in adipose tissue on cellular level. We therefore isolated pre-adipocytes, mature adipocytes and macrophages from adipose tissue biopsies and performed western-blotting. Results showed a sFRP5 expression specifically in mature adipocytes of subcutaneous and omental adipose tissue. In summary, our data suggest that DPP4i increase serum levels of anti-inflammatory sFRP5 which might be beneficial in COVID-19, reflecting a state of sFRP5 deficiency.


Subject(s)
COVID-19 Drug Treatment , Diabetes Mellitus, Type 2 , Dipeptidyl-Peptidase IV Inhibitors , Adaptor Proteins, Signal Transducing/metabolism , Anti-Inflammatory Agents , Diabetes Mellitus, Type 2/metabolism , Dipeptidyl-Peptidase IV Inhibitors/pharmacology , Dipeptidyl-Peptidase IV Inhibitors/therapeutic use , Eye Proteins/metabolism , Humans , Hypoglycemic Agents
6.
J Mol Cell Cardiol ; 172: 100-108, 2022 Nov.
Article in English | MEDLINE | ID: covidwho-2004619

ABSTRACT

Cardiovascular disease continues to be the leading health burden worldwide and with the rising rates in obesity and type II diabetes and ongoing effects of long COVID, it is anticipated that the burden of cardiovascular morbidity and mortality will increase. Calcium is essential to cardiac excitation and contraction. The main route for Ca2+ influx is the L-type Ca2+ channel (Cav1.2) and embryos that are homozygous null for the Cav1.2 gene are lethal at day 14 postcoitum. Acute changes in Ca2+ influx through the channel contribute to arrhythmia and sudden death, and chronic increases in intracellular Ca2+ contribute to pathological hypertrophy and heart failure. We use a multidisciplinary approach to study the regulation of the channel from the molecular level through to in vivo CRISPR mutant animal models. Here we describe some examples of our work from over 2 decades studying the role of the channel under physiological and pathological conditions. Our single channel analysis of purified human Cav1.2 protein in proteoliposomes has contributed to understanding direct molecular regulation of the channel including identifying the critical serine involved in the "fight or flight" response. Using the same approach we identified the cysteine responsible for altered function during oxidative stress. Chronic activation of the L-type Ca2+ channel during oxidative stress occurs as a result of persistent glutathionylation of the channel that contributes to the development of hypertrophy. We describe for the first time that activation of the channel alters mitochondrial function (and energetics) on a beat-to-beat basis via movement of cytoskeletal proteins. In translational studies we have used this response to "report" mitochondrial function in models of cardiomyopathy and to test efficacy of novel therapies to prevent cardiomyopathy.


Subject(s)
Calcium Channels, L-Type , Cardiomyopathies , Animals , Humans , Calcium/metabolism , Calcium Channels, L-Type/physiology , Cardiomyopathies/metabolism , COVID-19 , Diabetes Mellitus, Type 2/metabolism , Hypertrophy/metabolism , Myocytes, Cardiac/metabolism , Post-Acute COVID-19 Syndrome
7.
J Immunotoxicol ; 18(1): 93-104, 2021 07 24.
Article in English | MEDLINE | ID: covidwho-1947806

ABSTRACT

The aging immune system is characterized by a low-grade chronic systemic inflammatory state ("inflammaging") marked by elevated serum levels of inflammatory molecules such as interleukin (IL)-6 and C-reactive protein (CRP). These inflammatory markers were also reported to be strong predictors for the development/severity of Type 2 diabetes, obesity, and COVID-19. The levels of these markers have been positively associated with those of advanced glycation end-products (AGEs) generated via non-enzymatic glycation and oxidation of proteins and lipids during normal aging and metabolism. Based on the above observations, it is clinically important to elucidate how dietary AGEs modulate inflammation and might thus increase the risk for aging-exacerbated diseases. The present narrative review discusses the potential pro-inflammatory properties of dietary AGEs with a focus on the inflammatory mediators CRP, IL-6 and ferritin, and their relations to aging in general and Type 2 diabetes in particular. In addition, underlying mechanisms - including those related to gut microbiota and the receptors for AGEs, and the roles AGEs might play in affecting physiologies of the healthy elderly, obese individuals, and diabetics are discussed in regard to any greater susceptibility to COVID-19.


Subject(s)
COVID-19/metabolism , Diabetes Mellitus, Type 2/metabolism , Glycation End Products, Advanced/metabolism , Inflammation Mediators/metabolism , SARS-CoV-2/physiology , Aging , Animals , Diet , Dysbiosis , Gastrointestinal Microbiome , Glycation End Products, Advanced/immunology , Homeostasis , Humans , Immunity , Lipid Metabolism
8.
Cells ; 11(13)2022 07 04.
Article in English | MEDLINE | ID: covidwho-1917305

ABSTRACT

In the last 30 years the adipose cell has been object of several studies, turning its reputation from an inert cell into the main character involved in the pathophysiology of multiple diseases, including the ongoing COVID-19 pandemic, which has changed the clinical scenario of the last two years. Composed by two types of tissue (white and brown), with opposite roles, the adipose organ is now classified as a real endocrine organ whose dysfunction is involved in different diseases, mainly obesity and type 2 diabetes. In this mini-review we aim to retrace the adipose organ history from physiology to physiopathology, to provide therapeutic perspectives for the prevention and treatment of its two main related diseases (obesity and type 2 diabetes) and to summarize the most recent discoveries linking adipose tissue to COVID-19.


Subject(s)
COVID-19 , Diabetes Mellitus, Type 2 , Adipose Tissue, Brown/metabolism , Diabetes Mellitus, Type 2/metabolism , Humans , Obesity/metabolism , Pandemics
9.
Pharmacol Rev ; 74(3): 462-505, 2022 07.
Article in English | MEDLINE | ID: covidwho-1901904

ABSTRACT

The concept of local formation of angiotensin II in the kidney has changed over the last 10-15 years. Local synthesis of angiotensinogen in the proximal tubule has been proposed, combined with prorenin synthesis in the collecting duct. Binding of prorenin via the so-called (pro)renin receptor has been introduced, as well as megalin-mediated uptake of filtered plasma-derived renin-angiotensin system (RAS) components. Moreover, angiotensin metabolites other than angiotensin II [notably angiotensin-(1-7)] exist, and angiotensins exert their effects via three different receptors, of which angiotensin II type 2 and Mas receptors are considered renoprotective, possibly in a sex-specific manner, whereas angiotensin II type 1 (AT1) receptors are believed to be deleterious. Additionally, internalized angiotensin II may stimulate intracellular receptors. Angiotensin-converting enzyme 2 (ACE2) not only generates angiotensin-(1-7) but also acts as coronavirus receptor. Multiple, if not all, cardiovascular diseases involve the kidney RAS, with renal AT1 receptors often being claimed to exert a crucial role. Urinary RAS component levels, depending on filtration, reabsorption, and local release, are believed to reflect renal RAS activity. Finally, both existing drugs (RAS inhibitors, cyclooxygenase inhibitors) and novel drugs (angiotensin receptor/neprilysin inhibitors, sodium-glucose cotransporter-2 inhibitors, soluble ACE2) affect renal angiotensin formation, thereby displaying cardiovascular efficacy. Particular in the case of the latter three, an important question is to what degree they induce renoprotection (e.g., in a renal RAS-dependent manner). This review provides a unifying view, explaining not only how kidney angiotensin formation occurs and how it is affected by drugs but also why drugs are renoprotective when altering the renal RAS. SIGNIFICANCE STATEMENT: Angiotensin formation in the kidney is widely accepted but little understood, and multiple, often contrasting concepts have been put forward over the last two decades. This paper offers a unifying view, simultaneously explaining how existing and novel drugs exert renoprotection by interfering with kidney angiotensin formation.


Subject(s)
Cardiovascular Diseases , Diabetes Mellitus, Type 2 , Sodium-Glucose Transporter 2 Inhibitors , Angiotensin II/metabolism , Angiotensin-Converting Enzyme 2 , Angiotensinogen/metabolism , Cardiovascular Diseases/metabolism , Diabetes Mellitus, Type 2/metabolism , Drug Delivery Systems , Female , Humans , Kidney/blood supply , Kidney/metabolism , Male , Renin/metabolism , Renin-Angiotensin System , Sodium-Glucose Transporter 2 Inhibitors/metabolism
10.
Nutrients ; 13(11)2021 Nov 08.
Article in English | MEDLINE | ID: covidwho-1732137

ABSTRACT

Associations between habitual dietary intake of minerals and glucose metabolism have been extensively studied in relation to metabolic disorders. However, similar research has yet to be conducted in individuals after acute pancreatitis (AP). The main aim was to investigate the associations between habitual intake of 13 minerals and glycaemic status: new-onset prediabetes/diabetes after AP (NODAP), pre-existing prediabetes/type 2 diabetes (T2DM), and normoglycaemia after AP (NAP). Associations between the dietary intake of minerals and markers of glucose metabolism (glycated haemoglobin and fasting plasma glucose) were also studied. The EPIC-Norfolk food frequency questionnaire was used in a cross-sectional fashion to determine the habitual intake of 13 dietary minerals. ANCOVA as well as multiple linear regression analyses were conducted and five statistical models were built to adjust for covariates. The study included 106 individuals after AP. In the NODAP group, intake of 4 minerals was significantly less when compared with the NAP group: iron (B = -0.076, p = 0.013), nitrogen (B = -0.066, p = 0.003), phosphorous (B = -0.046, p = 0.006), and zinc (B = -0.078, p = 0.001). Glycated haemoglobin was significantly associated with iodine intake (B = 17.763, p = 0.032) and manganese intake (B = -17.147, p = 0.003) in the NODAP group. Fasting plasma glucose was significantly associated with manganese intake (B = -2.436, p = 0.027) in the NODAP group. Habitual intake of minerals differs between individuals with NODAP, T2DM, and NAP. Prospective longitudinal studies and randomised controlled trials are now warranted to further investigate the associations between mineral intake and NODAP.


Subject(s)
Diabetes Mellitus/etiology , Diet , Minerals/administration & dosage , Pancreatitis/complications , Prediabetic State/etiology , Biomarkers/blood , Blood Glucose/metabolism , Cross-Sectional Studies , Diabetes Mellitus/metabolism , Diabetes Mellitus, Type 2/metabolism , Female , Glucose/metabolism , Humans , Insulin/blood , Male , Middle Aged , Pancreatitis/metabolism , Prediabetic State/metabolism , Prospective Studies
11.
Diabetes Metab J ; 46(2): 260-272, 2022 03.
Article in English | MEDLINE | ID: covidwho-1732345

ABSTRACT

BACKGROUND: Abrupt implementation of lockdowns during the coronavirus disease 2019 (COVID-19) pandemic affected the management of diabetes mellitus in patients worldwide. Limited access to health facilities and lifestyle changes potentially affected metabolic parameters in patients at risk. We conducted a meta-analysis to determine any differences in the control of metabolic parameters in patients with diabetes, before and during lockdown. METHODS: We performed searches of five databases. Meta-analyses were carried out using random- or fixed-effect approaches to glycaemic control parameters as the primary outcome: glycosylated hemoglobin (HbA1c), random blood glucose (RBG), fasting blood glucose (FBG), time-in-range (TIR), time-above-range (TAR), time-below-range (TBR). Mean difference (MD), confidence interval (CI), and P value were calculated. Lipid profile was a secondary outcome and is presented as a descriptive analysis. RESULTS: Twenty-one studies enrolling a total of 3,992 patients with type 1 or type 2 diabetes mellitus (T1DM or T2DM) were included in the study. Patients with T1DM showed a significant improvement of TIR and TAR (MD=3.52% [95% CI, 0.29 to 6.74], I2=76%, P=0.03; MD=-3.36% [95% CI, -6.48 to -0.25], I2=75%, P=0.03), while FBG among patients with T2DM significantly worsened (MD=3.47 mg/dL [95% CI, 1.22 to 5.73], I2=0%, P<0.01). No significant difference was found in HbA1c, RBG, and TBR. Use of continuous glucose monitoring in T1DM facilitated good glycaemic control. Significant deterioration of lipid parameters during lockdown, particularly triglyceride, was observed. CONCLUSION: Implementation of lockdowns during the COVID-19 pandemic did not worsen glycaemic control in patients with diabetes. Other metabolic parameters improved during lockdown, though lipid parameters, particularly triglyceride, worsened.


Subject(s)
COVID-19 , Diabetes Mellitus, Type 1 , Diabetes Mellitus, Type 2 , Quarantine , Blood Glucose/metabolism , Blood Glucose Self-Monitoring , COVID-19/prevention & control , Diabetes Mellitus, Type 1/metabolism , Diabetes Mellitus, Type 1/therapy , Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Type 2/therapy , Glycated Hemoglobin/metabolism , Humans , Pandemics/prevention & control , Triglycerides/metabolism
12.
Int J Mol Sci ; 23(5)2022 Feb 23.
Article in English | MEDLINE | ID: covidwho-1715405

ABSTRACT

The abnormal accumulation of methylglyoxal (MG) leading to increased glycation of protein and DNA has emerged as an important metabolic stress, dicarbonyl stress, linked to aging, and disease. Increased MG glycation produces inactivation and misfolding of proteins, cell dysfunction, activation of the unfolded protein response, and related low-grade inflammation. Glycation of DNA and the spliceosome contribute to an antiproliferative and apoptotic response of high, cytotoxic levels of MG. Glyoxalase 1 (Glo1) of the glyoxalase system has a major role in the metabolism of MG. Small molecule inducers of Glo1, Glo1 inducers, have been developed to alleviate dicarbonyl stress as a prospective treatment for the prevention and early-stage reversal of type 2 diabetes and prevention of vascular complications of diabetes. The first clinical trial with the Glo1 inducer, trans-resveratrol and hesperetin combination (tRES-HESP)-a randomized, double-blind, placebo-controlled crossover phase 2A study for correction of insulin resistance in overweight and obese subjects, was completed successfully. tRES-HESP corrected insulin resistance, improved dysglycemia, and low-grade inflammation. Cell permeable Glo1 inhibitor prodrugs have been developed to induce severe dicarbonyl stress as a prospective treatment for cancer-particularly for high Glo1 expressing-related multidrug-resistant tumors. The prototype Glo1 inhibitor is prodrug S-p-bromobenzylglutathione cyclopentyl diester (BBGD). It has antitumor activity in vitro and in tumor-bearing mice in vivo. In the National Cancer Institute human tumor cell line screen, BBGD was most active against the glioblastoma SNB-19 cell line. Recently, potent antitumor activity was found in glioblastoma multiforme tumor-bearing mice. High Glo1 expression is a negative survival factor in chemotherapy of breast cancer where adjunct therapy with a Glo1 inhibitor may improve treatment outcomes. BBGD has not yet been evaluated clinically. Glycation by MG now appears to be a pathogenic process that may be pharmacologically manipulated for therapeutic outcomes of potentially important clinical impact.


Subject(s)
Diabetes Mellitus, Type 2/drug therapy , Glutathione/analogs & derivatives , Hesperidin/therapeutic use , Lactoylglutathione Lyase/metabolism , Neoplasms, Experimental/drug therapy , Resveratrol/therapeutic use , Animals , Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Type 2/physiopathology , Drug Therapy, Combination , Enzyme Induction/drug effects , Glutathione/chemistry , Glutathione/therapeutic use , Glycosylation/drug effects , Hesperidin/chemistry , Humans , Insulin Resistance/physiology , Lactoylglutathione Lyase/antagonists & inhibitors , Mice , Molecular Structure , Neoplasms, Experimental/metabolism , Obesity/drug therapy , Obesity/metabolism , Obesity/physiopathology , Pyruvaldehyde/chemistry , Pyruvaldehyde/metabolism , Resveratrol/chemistry
13.
Stem Cell Rev Rep ; 18(3): 1193-1206, 2022 03.
Article in English | MEDLINE | ID: covidwho-1620352

ABSTRACT

Type 2 diabetes mellitus (T2DM), one of the most common carbohydrate metabolism disorders, is characterized by chronic hyperglycemia and insulin resistance (IR), and has become an urgent global health challenge. Mesenchymal stem cells (MSCs) originating from perinatal tissues such as umbilical cord (UC) and amniotic membrane (AM) serve as ideal candidates for the treatment of T2DM due to their great advantages in terms of abundant source, proliferation capacity, immunomodulation and plasticity for insulin-producing cell differentiation. However, the optimally perinatal MSC source to treat T2DM remains elusive. This study aims to compare the therapeutic efficacy of MSCs derived from AM and UC (AMMSCs and UCMSCs) of the same donor in the alleviation of T2DM symptoms and explore the underlying mechanisms. Our results showed that AMMSCs and UCMSCs displayed indistinguishable immunophenotype and multi-lineage differentiation potential, but UCMSCs had a much higher expansion capacity than AMMSCs. Moreover, we uncovered that single-dose intravenous injection of either AMMSCs or UCMSCs could comparably reduce hyperglycemia and improve IR in T2DM db/db mice. Mechanistic investigations revealed that either AMMSC or UCMSC infusion could greatly improve glycolipid metabolism in the liver of db/db mice, which was evidenced by decreased liver to body weight ratio, reduced lipid accumulation, upregulated glycogen synthesis, and increased Akt phosphorylation. Taken together, these data indicate that the same donor-derived AMMSCs and UCMSCs possessed comparable effects and shared a similar hepatoprotective mechanism on the alleviation of T2DM symptoms.


Subject(s)
Diabetes Mellitus, Type 2 , Hyperglycemia , Insulin Resistance , Mesenchymal Stem Cells , Amnion , Animals , Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Type 2/therapy , Mice , Umbilical Cord
14.
Sci Rep ; 12(1): 188, 2022 01 07.
Article in English | MEDLINE | ID: covidwho-1612207

ABSTRACT

Patients with diabetes are more likely to be infected with Coronavirus disease 2019 (COVID-19), and the risk of death is significantly higher than ordinary patients. Dipeptidyl peptidase-4 (DPP4) is one of the functional receptor of human coronavirus. Exploring the relationship between diabetes mellitus targets and DPP4 is particularly important for the management of patients with diabetes and COVID-19. We intend to study the protein interaction through the protein interaction network in order to find a new clue for the management of patients with diabetes with COVID-19. Diabetes mellitus targets were obtained from GeneCards database. Targets with a relevance score exceeding 20 were included, and DPP4 protein was added manually. The initial protein interaction network was obtained through String. The targets directly related to DPP4 were selected as the final analysis targets. Importing them into String again to obtain the protein interaction network. Module identification, gene ontology (GO) analysis and Kyoto encyclopedia of genes and genomes (KEGG) pathway analysis were carried out respectively. The impact of DPP4 on the whole network was analyzed by scoring the module where it located. 43 DPP4-related proteins were finally selected from the diabetes mellitus targets and three functional modules were found by the cluster analysis. Module 1 was involved in insulin secretion and glucagon signaling pathway, module 2 and module 3 were involved in signaling receptor binding. The scoring results showed that LEP and apoB in module 1 were the highest, and the scores of INS, IL6 and ALB of cross module associated proteins of module 1 were the highest. DPP4 is widely associated with key proteins in diabetes mellitus. COVID-19 may affect DPP4 in patients with diabetes mellitus, leading to high mortality of diabetes mellitus combined with COVID-19. DPP4 inhibitors and IL-6 antagonists can be considered to reduce the effect of COVID-19 infection on patients with diabetes.


Subject(s)
COVID-19/metabolism , Diabetes Mellitus, Type 2/metabolism , Dipeptidyl Peptidase 4/metabolism , Protein Interaction Maps , SARS-CoV-2/physiology , COVID-19/complications , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/drug therapy , Dipeptidyl-Peptidase IV Inhibitors/therapeutic use , Drug Discovery , Humans , Protein Interaction Maps/drug effects , COVID-19 Drug Treatment
15.
Bull Exp Biol Med ; 172(3): 283-287, 2022 Jan.
Article in English | MEDLINE | ID: covidwho-1611428

ABSTRACT

We studied laboratory parameters of patients with COVID-19 against the background of chronic pathologies (cardiovascular pathologies, obesity, type 2 diabetes melitus, and cardiovascular pathologies with allergy to statins). A decrease in pH and a shift in the electrolyte balance of blood plasma were revealed in all studied groups and were most pronounced in patients with cardiovascular pathologies with allergy to statin. It was found that low pH promotes destruction of lipid components of the erythrocyte membranes in patients with chronic pathologies, which was seen from a decrease in Na+/K+-ATPase activity and significant hyponatrenemia. In patients with cardiovascular pathologies and allergy to statins, erythrocyte membranes were most sensitive to a decrease in pH, while erythrocyte membranes of obese patients showed the greatest resistance to low pH and oxidative stress.


Subject(s)
COVID-19/complications , Hyponatremia/etiology , Hypoxia/complications , Sodium-Potassium-Exchanging ATPase/physiology , Aged , COVID-19/metabolism , Cardiovascular Diseases/complications , Cardiovascular Diseases/metabolism , Cardiovascular Diseases/virology , Case-Control Studies , Chronic Disease , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Type 2/virology , Drug Hypersensitivity/complications , Drug Hypersensitivity/metabolism , Drug Hypersensitivity/virology , Erythrocyte Membrane/metabolism , Erythrocytes/metabolism , Female , Fluid Shifts/physiology , Humans , Hydrogen-Ion Concentration , Hydroxymethylglutaryl-CoA Reductase Inhibitors/adverse effects , Hyponatremia/metabolism , Hyponatremia/virology , Hypoxia/metabolism , Lipid Peroxidation/physiology , Male , Middle Aged , Obesity/complications , Obesity/metabolism , Obesity/virology , Oxidative Stress/physiology , SARS-CoV-2/physiology , Sodium/metabolism , Stress, Physiological/physiology
16.
Mol Metab ; 55: 101409, 2022 01.
Article in English | MEDLINE | ID: covidwho-1540868

ABSTRACT

BACKGROUND: Chronic disease appears connected to obesity. However, evidence suggests that chronic metabolic diseases are more specifically related to adipose dysfunction rather than to body weight itself. SCOPE OF REVIEW: Further study of the first generation "insulin sensitizer" pioglitazone and molecules based on its structure suggests that is possible to decouple body weight from the metabolic dysfunction that drives adverse outcomes. The growing understanding of the mechanism of action of these agents together with advances in the pathophysiology of chronic metabolic disease offers a new approach to treat chronic conditions, such as type 2 diabetes, fatty liver disease, and their common organ and vascular sequelae. MAJOR CONCLUSIONS: We hypothesize that treating adipocyte dysfunction with new insulin sensitizers might significantly impact the interface of infectious disease and chronic metabolic disease.


Subject(s)
Chronic Disease/drug therapy , Metabolic Syndrome/drug therapy , Metabolic Syndrome/metabolism , Thiazolidinediones/pharmacology , Adipose Tissue/metabolism , COVID-19 , Diabetes Mellitus, Type 2/metabolism , Humans , Inflammation , Insulin/metabolism , Insulin Resistance , Metabolic Diseases/metabolism , Mitochondria , Non-alcoholic Fatty Liver Disease , Pioglitazone/metabolism
17.
Am J Physiol Endocrinol Metab ; 322(1): E44-E53, 2022 01 01.
Article in English | MEDLINE | ID: covidwho-1518165

ABSTRACT

In December 2019, a pandemic emerged due to a new coronavirus that imposed various uncertainties and discoveries. It has been reported that diabetes is a risk factor for worst outcomes of COVID-19 and also that SARS-CoV-2 infection was correlated with the occurrence of diabetic ketoacidosis (DKA) in patients. The aim of this work is to discuss this correlation emphasizing the main case reports from 2020 while exploring the management of DKA during the course of COVID-19. Web of Science, PubMed, and Scopus databases were searched using two sets of Medical Subject Heading (MeSH) search terms or Title/Abstract words: Coronavirus Infections (Coronavirus Infections, Middle East Respiratory Syndrome, COVID-19) and Diabetic Ketoacidosis (Diabetic Ketoacidosis, Diabetic Acidosis, Diabetic Ketosis). There is a clear correlation between COVID-19 and DKA. The SARS-Cov-2 infection may precipitate both a hyperglycemic state and ketoacidosis occurrence in patients with diabetes and nondiabetic patients, which may lead to fatal outcomes. DKA in patients with COVID-19 may increase risk and worse outcomes. Hence, the SARS-Cov-2 infection presents a new perspective toward the management of glycemia and acidosis in patients with diabetes and nondiabetic patients, highlighting the need for rapid interventions to minimize the complications from COVID-19 while reducing its spreading.


Subject(s)
COVID-19/complications , Diabetic Ketoacidosis/complications , Blood Glucose/analysis , Blood Glucose Self-Monitoring , COVID-19/metabolism , Diabetes Mellitus, Type 1/complications , Diabetes Mellitus, Type 1/drug therapy , Diabetes Mellitus, Type 1/metabolism , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/metabolism , Diabetic Ketoacidosis/drug therapy , Diabetic Ketoacidosis/metabolism , Humans , Hyperglycemia/complications , Hyperglycemia/drug therapy , Hypoglycemic Agents/therapeutic use , Insulin/administration & dosage , Insulin/therapeutic use , Prognosis , Risk Factors , Telemedicine
18.
Front Endocrinol (Lausanne) ; 12: 731974, 2021.
Article in English | MEDLINE | ID: covidwho-1485049

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is causing a worldwide epidemic. It spreads very fast and hits people of all ages, especially patients with underlying diseases such as diabetes. In this review, we focus on the influences of diabetes on the outcome of SARS-CoV-2 infection and the involved mechanisms including lung dysfunction, immune disorder, abnormal expression of angiotensin-converting enzyme 2 (ACE2), overactivation of mechanistic target of rapamycin (mTOR) signaling pathway, and increased furin level. On the other hand, SARS-CoV-2 may trigger the development of diabetes. It causes the damage of pancreatic ß cells, which is probably mediated by ACE2 protein in the islets. Furthermore, SARS-CoV-2 may aggravate insulin resistance through attacking other metabolic organs. Of note, certain anti-diabetic drugs (OADs), such as peroxisome proliferator-activated receptor γ (PPARγ) activator and glucagon-like peptide 1 receptor (GLP-1R) agonist, have been shown to upregulate ACE2 in animal models, which may increase the risk of SARS-CoV-2 infection. However, Metformin, as a first-line medicine for the treatment of type 2 diabetes mellitus (T2DM), may be a potential drug benefiting diabetic patients with SARS-CoV-2 infection, probably via a suppression of mTOR signaling together with its anti-inflammatory and anti-fibrosis function in lung. Remarkably, another kind of OADs, dipeptidyl Peptidase 4 (DPP4) inhibitor, may also exert beneficial effects in this respect, probably via a prevention of SARS-CoV-2 binding to cells. Thus, it is of significant to identify appropriate OADs for the treatment of diabetes in the context of SARS-CoV-2 infections.


Subject(s)
COVID-19/epidemiology , COVID-19/metabolism , Diabetes Mellitus, Type 2/epidemiology , Diabetes Mellitus, Type 2/metabolism , Angiotensin-Converting Enzyme 2/antagonists & inhibitors , Angiotensin-Converting Enzyme 2/metabolism , Animals , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Diabetes Mellitus, Type 2/drug therapy , Dipeptidyl-Peptidase IV Inhibitors/pharmacology , Dipeptidyl-Peptidase IV Inhibitors/therapeutic use , Humans , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/therapeutic use , Lung/drug effects , Lung/metabolism , T-Lymphocytes/drug effects , T-Lymphocytes/metabolism , TOR Serine-Threonine Kinases/antagonists & inhibitors , TOR Serine-Threonine Kinases/metabolism , COVID-19 Drug Treatment
19.
Int J Mol Sci ; 22(18)2021 Sep 17.
Article in English | MEDLINE | ID: covidwho-1448875

ABSTRACT

The metabolic syndrome (MetS) consists of a cluster of metabolic abnormalities including central obesity, insulin resistance, glucose intolerance, hypertension, and atherogenic dyslipidemia [...].


Subject(s)
Metabolic Syndrome/metabolism , Obesity/metabolism , Animals , Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Type 2/physiopathology , Humans , Insulin Resistance/physiology , Metabolic Syndrome/physiopathology , Obesity/physiopathology
20.
Pharmacol Res ; 169: 105665, 2021 07.
Article in English | MEDLINE | ID: covidwho-1433725

ABSTRACT

Previous studies have reported that vitamin C supplementation may decrease lipid profile in patients with type 2 diabetes mellitus (T2DM). This systematic review and meta-analysis evaluated the influence of vitamin C supplementation on lipid profile in patients with T2DM. Studies examining the effects of vitamin C supplementation on lipid profile in patients with T2DM, published up to November 2020, were identified through PubMed, SCOPUS, and Embase databases. 15 studies, including 872 participants, were included and analyzed using a random-effects model to calculate weighted mean differences (WMDs) with 95% confidence intervals (CI). Findings from 15 studies indicated that vitamin C supplementation significantly decreased Triglyceride (TG) (WMD: -16.48 mg/dl, 95% CI (-31.89, -1.08), P < 0.001) and total cholesterol (TC) (WMD: -13.00 mg/dl, 95% CI (-23.10, -2.91), P < 0.001) in patients with T2DM. However, vitamin C supplementation failed to improve LDL and HDL. The meta-regression analysis suggested that lipid profile improvement was affected by duration of vitamin C treatment. Dose-response analysis showed that vitamin C supplementation changed LDL significantly based on vitamin C dose. According to our findings, vitamin C supplementation significantly improved lipid profile via decreases in TG and TC. However, vitamin C failed to affect LDL and HDL in diabetic populations. It appears that vitamin C supplementation is more beneficial to lipid profile in long-term vs. short term interventions.


Subject(s)
Ascorbic Acid/therapeutic use , Diabetes Mellitus, Type 2/drug therapy , Lipids/blood , Ascorbic Acid/administration & dosage , Ascorbic Acid/pharmacology , Diabetes Mellitus, Type 2/blood , Diabetes Mellitus, Type 2/metabolism , Dietary Supplements , Dose-Response Relationship, Drug , Humans , Lipid Metabolism/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL